Research group

“Simply complex!
A multimodal and interdisciplinary approach to examine linguistic complexity within Easy Language“

https://www.blogs.uni-mainz.de/fb05leichtesprache-eng/
leichtesprache@uni-mainz.de
Research group “Simply complex!
A multimodal and interdisciplinary approach to examine linguistic complexity within Easy Language“

- Easy Language: variety with reduced complexity for target groups with special communication needs
- Perspective of intralingual translation
- No empirical validation of controlled language rules from a neuroscientific perspective
- No empirical evidence of cognitive effort
- Trade-off between linguistic complexity levels (e.g. “taxi driver“ vs. “driver of the taxi“)
Research group “Simply complex!
A multimodal and interdisciplinary approach to examine linguistic complexity within Easy Language“
Research group “Simply complex! A multimodal and interdisciplinary approach to examine linguistic complexity within Easy Language“
Multi-method approach

Independent variables:
- standard language
- easy language
- plain language

Control variables:
- meta data
- test for verbal fluency,
- test for working memory
- etc.

Dependend variables:
- eyetracking
- EEG
- fMRT

In combination with
- comprehensibility rating
- comprehensibility test
- recall task
Eye Tracking Study on the Visual Segmentation of Compounds in Easy Language

Silvana Deilen
Research Background

<table>
<thead>
<tr>
<th>Rindfleisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rindfleischetikettierung</td>
</tr>
<tr>
<td>Rindfleischetikettierungsüberwachung</td>
</tr>
<tr>
<td>Rindfleischetikettierungsüberwachungsaufgabe</td>
</tr>
<tr>
<td>Rindfleischetikettierungsüberwachungsaufgabenübertragung</td>
</tr>
<tr>
<td>Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz</td>
</tr>
</tbody>
</table>

- Segmentation of compounds to facilitate lexical access
 - Rind-Fleisch-Etikettierung ❌
 - Rind·fleisch·etikettierung ✔

- Lack of empirical evidence
Hypothesis and Method

Compounds structured with an interpunct are processed faster than compounds structured with a hyphen

The insertion of an interpunct facilitates processing of transparent compounds (1), but hinders processing of non-transparent compounds (2)

(1) Apfel·baum < Apfel-Baum < Apfelbaum (2) Löwenzahn < Löwen·zahn < Löwen-Zahn

Method

• Experiments on word level (word-picture-matching-test) and sentence level
• **Independent variables:**
 - Visual structuring sign
 - Number of morphemes
 - Semantic transparency
Hypothesis and Method

Method

- **Recording of eye movements:**
 - Number of fixations
 - First fixation duration
 - Total reading time
 - Regressions

- **Participants:**
 - neurologically unimpaired speakers
 - students with prelingual hearing impairments/deafness

- **Background assessments:**
 - Reading test (reading quotient \approx intelligence quotient)
 - Psycholinguistic test battery
 - Cognitive flexibility
 - Working memory capacity
 - Verbal intelligence
Löwen-Zahn (*dandelion*)
Results: Reading test

- Significant correlation between reading quotient and test battery scores
- 2 subgroups (median split)

![Pie chart showing reading quotients:](chart.png)

- Below the lowest reading quotient listed in the standard norm table
- Very poor
- Weak
- Below-average
- Average
- Good
First Results: Number of morphemes

Unimpaired speakers

Target group
First Results: Context (number of morphemes)

Unimpaired speakers

Target group
First Results: Transparency

Unimpaired speakers

Target group
First Results: Context (semantic transparency)

Unimpaired speakers

Target group
Effects of frequency, length and repetition on the visual word processing of people with cognitive impairment

Laura Schiffl
Hypothesis and Method

Do people with cognitive impairment show the same effects on visual word processing as unimpaired adults?

word length – word frequency – word repetition – learning from repeated reading

→ emerge mainly from reading experience

Participants

▪ **Target group:** Adults with cognitive impairment of all etiologies and varying level of retardation

▪ **Control group:** Gender and age matched adults without impairment

Method

Evaluation of

▪ Meta data (age, gender, amount of media consumption)

▪ Neuropsychological ability (working memory, verbal fluency etc.)

▪ Reading ability (word and sentence level)

▪ Answer accuracy (follow-up questions in ET-experiment)

• **Eye-tracking-experiments** on single sentence level containing one target word each

• **Independent variables:**
 ▪ Word length (short vs. long)
 ▪ Word frequency (high vs. low)
 ▪ Number of repetitions

• **Recording of eye-movements:**
 ▪ Number of fixations & fixation duration
 ▪ Total reading time
 ▪ Regressions
Hypothesis and Method

Main experiment
• Eye-Tracking: Presentation of 48 sentences followed by comprehension question aiming at target word

Follow-Up experiment
• Eye-Tracking: Presentation of 16 sentences (all target words that had been presented repeatedly in main experiment)

Second experiment
• Behavioral Task:
 Rating of aurally presented word- and sentence material by target group with insufficient reading ability

 Word level: familiarity
 Sentence level: comprehensibility
 (Likert Scale 1-4)
Analysis

Participant Profile
- Cognitive performance
- Personal data
- Amount of media consumption

Reading ability
- Pretests
- Answer accuracy

Visual word processing
- Frequency effect
- Length effect
- Learning effect
Cognitive Profiles

Target Group

Control Group
First Results

Reading quotient = \[
\frac{\text{words read correctly} + \text{nonwords read correctly} + \text{sentences rated correctly}}{3}
\]
First Results

Reading quotient = \[\frac{\text{words read correctly} + \text{nonwords read correctly} + \text{sentences rated correctly}}{3}\]

<table>
<thead>
<tr>
<th>Reading Quotient</th>
<th>Word reading</th>
<th>Non-word reading</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group</td>
<td>121</td>
<td>78</td>
<td>43</td>
</tr>
<tr>
<td>Target Group</td>
<td>43</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>Children (~7 y.)</td>
<td>46</td>
<td>42</td>
<td>4</td>
</tr>
</tbody>
</table>

(Tiffin-Richards/Schroeder 2015)
First Results

Answer accuracy

- Significant difference between control and target group ✓
- Overall better results for frequent and short words in target group? x
First Results

Answer accuracy
- Significant difference between control and target group ✓
- Overall better results for frequent and short words in target group? x
- Improvements in Follow-Up evaluation? x
First Results

Answer accuracy
- Significant difference between control and target group ✓
- Overall better results for frequent and short words in target group? x
- Improvements in Follow-Up evaluation? x
- Correlation media consumption and reading ability x

Work in progress:

Total Reading Time
- Shorter times for frequent and short words?
- Consistency in participant results?
- Improvements in Follow-Up evaluation?

Fixations and Regressions
- Shorter fixations and less regressions for short words compared to long words?
- Shorter fixations and less regressions for frequent words compared to infrequent words?
- Shorter fixations and less regressions for repeated words?
- Improvements in Follow-Up evaluation?

- Influence of reading quotient on visual word processing?
Challenges & Outlook

Challenges

Difficulties in calibrating the eye-tracking-system

• Low data quality
 • Eye deformity
 • Nystagmus
 • Squint
 • Body and head movement
• Difficulties in following and remembering instructions
• Organisation of participation (e.g. arrangements, legal guardians)
• Self-evaluation of reading abilities

Expected Outcome

• Find hierarchies in lexical complexity: which Easy Language on lexis rule should weigh more?
• Find predictors for reading impairment in target group
• Insight into cognitive processing of varying complexity levels
Negation in Easy Language in German

Does typographic emphasis of negation words enhance negation processing?

Johanna Sommer
Hypothesis and Research Questions

Higher negativity after negation in N4-P6 timewindow (Lüdtke et al. (2006) (1)
Meaningful typographic changes to uppercase lead to lower semantic integration costs
\[\rightarrow \] reduced N400 (Lotze et al. (2011) (2)

1. Does bold typeface lead to similar effects as uppercase changes?
2. Does typographic marking lead to processing differences in following words?
3. Is negation processing effected by typographic marking?
4. Are there processing differences between different forms of negation (Object-category relevance vs. Verb-object relation)?

\[\rightarrow \] Uppercase more pronounced effects
\[\rightarrow \] Exploratory effects for integration of following words
Method (I)

Categorial matching of subjects to their categories

| Truth-value evaluation | 2 (Truth value) x 2 (Polarity) x 3 (Typography) x | 360 sentences (30 items / condition) |

<table>
<thead>
<tr>
<th>Bold Typeface</th>
<th>UPPERCASE</th>
<th>Normal case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affirmation true (TAF)</td>
<td>TAU</td>
<td>TAN</td>
</tr>
<tr>
<td>A rose is a flower. (Eine Rose ist eine Blume)</td>
<td>A rose is A flower.</td>
<td>A rose is a flower.</td>
</tr>
<tr>
<td>Affirmation false (EAF)</td>
<td>FAU</td>
<td>FAN</td>
</tr>
<tr>
<td>A rose is a vehicle. (Eine Rose ist ein Fahrzeug)</td>
<td>A rose is A vehicle.</td>
<td>A rose is a vehicle.</td>
</tr>
<tr>
<td>Negation true (TNF)</td>
<td>TNU</td>
<td>TNN</td>
</tr>
<tr>
<td>A rose is no vehicle. (Eine Rose ist kein Fahrzeug)</td>
<td>A rose is NO vehicle.</td>
<td>A rose is no vehicle.</td>
</tr>
<tr>
<td>Negation false (FNF)</td>
<td>FNU</td>
<td>FNN</td>
</tr>
<tr>
<td>A rose is no flower. (Eine Rose ist keine Blume)</td>
<td>A rose is NO flower.</td>
<td>A rose is no flower.</td>
</tr>
</tbody>
</table>

ERPs after negation word: 50-150ms, 150-250ms
ERPs after negated object: 50ms-150ms, 150-250ms, 300-500ms, 500-800ms, 500-1000ms.

Target sentence in RSVP

Accuracy

RT
Method (II)

Semantic congruency between verb and object

<table>
<thead>
<tr>
<th>Truth-value evaluation</th>
<th>360 sentences (30 items / condition)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bold Typeface</th>
<th>UPPERCASE</th>
<th>Normal case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affirmation true (CAF)</td>
<td>CAU</td>
<td>CAN</td>
</tr>
<tr>
<td>The woman reads a newspaper.</td>
<td>The woman reads A newspaper.</td>
<td>The woman reads a newspaper.</td>
</tr>
<tr>
<td>(Die Frau liest eine Zeitung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affirmation false (IAF)</td>
<td>IAU</td>
<td>IAN</td>
</tr>
<tr>
<td>The woman reads a bicycle.</td>
<td>The woman reads A bicycle.</td>
<td>The woman reads a bicycle.</td>
</tr>
<tr>
<td>(Die Frau liest ein Fahrrad)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negation true (CNF)</td>
<td>CNU</td>
<td>CNN</td>
</tr>
<tr>
<td>The woman reads no newspaper.</td>
<td>The woman reads NO newspaper.</td>
<td>The woman reads no newspaper.</td>
</tr>
<tr>
<td>(Die Frau liest keine Zeitung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negation false (INF)</td>
<td>INU</td>
<td>INN</td>
</tr>
<tr>
<td>The woman reads no bicycle.</td>
<td>The woman reads NO bicycle.</td>
<td>The woman reads no bicycle.</td>
</tr>
<tr>
<td>(Die Frau liest kein Fahrrad)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

360 sentences (30 items / condition)

Truth-value evaluation

2 (Congruency) x 2 (Polarity) x 3 (Typography) x

Target sentence in RSVP

**???

ERPs after negation word: 50-150ms, 150-250ms
ERPs after negated Object: 50ms-150ms, 150-250ms, 300-500ms, 500-800ms, 500-1000ms.

**accuracy

RT
Procedure

• n=21 (11=m)

• Age $M=24,0$ years (range=20-37)

• Inclusion criteria for EEG experiments (right-handed, native speakers German, no neurological, physical, speech, hearing or visual impairments), neuropsychological tests: no salience

• EEG recording with international 10/20 electrode system, 25 scalp electrodes, referencing via right mastoid electrode, re-referencing via left mastoid electrode, ground: AFz, 4 eye electrodes

• Impedance set lower 10kΩ, sampling rate 250Hz

• 4 lists à 720 sentences in 6 blocks

• RSVP (* / 300ms Word / 200ms ISI / 500ms bs / ??? → button press as fast as possible / 1000ms ITI),

• Accuracy , RTs for truth value / senseness evaluation, 11 subjects: left button as “true / makes sense“

• (“Please decide whether the sentence makes sense or not as fast as possible.“)
Behavioral Results

Accuracy:

→ Aff > Neg

RTs:

1. Aff < Neg \((F(1,19) = 72,586, p<0,01) \)

Truth x Polarity x Typography \((F(1,19) = 9,377, p<0,01) \)
→ In TA, FA, TN uppercase (U) the slowest

2. Aff < Neg \((F(1,19) = 36,122, p<0,01) \),

Typography \((F(1,19)=6,645, p<0,05) \) → normal case significantly slowest

Congruency x Polarity x Typography \((F(1,19) = 15,151, p<0,01) \)

General advantage by U

CA and IN: F<U<N

IA and CN: U<N<F
ERPs

- General replication of negativity after negated concepts
- Visual integration of negation word more prominent than affirmative article
- Only in affirmatives: U more pronounces effects
- Only in object category items: bold typeface leads to less negativity after negation word

→ no clear interaction between typographic marking and meaning integration

→ negation processing differences between Stimulus sets
General Negation Processing – ERPs after Negation Words

- Visual integration of negation word more prominent than affirmative article
- Only in affirmatives: U > N

AFF: … a flower. / … an animal. … a newspaper. / … a bicycle.
(Eine Rose ist eine Blume. / Die Frau liest eine Zeitung.)

NEG: … no flower. / … no animal. … no newspaper. / … no bicycle.
(Eine Rose ist keine Blume. / Die Frau liest keine Zeitung.)
General Negation Processing – ERPs after Target Words

- General replication of negativity after negated concepts
- Only in affirmatives: \(U < N \)
- Bold case \(< N \)

AFF: A rose is \(\textbf{a} \) flower. / \(\textbf{an} \) animal.
The woman reads \(\textbf{a} \) newspaper. / \(\textbf{a} \) bicycle.
(Eine Rose ist \(\textbf{eine} \) Blume. / Die Frau liest \(\textbf{eine} \) Zeitung.)

NEG: A rose is \(\textbf{no} \) flower. / \(\textbf{no} \) animal.
The woman reads \(\textbf{no} \) newspaper. / \(\textbf{no} \) bicycle.
(Eine Rose ist \(\textbf{keine} \) Blume. / Die Frau liest \(\textbf{keine} \) Zeitung.)
General Negation Processing – ERPs after Target Words (I)

Effects of typographic emphasis on meaning integration

True Negatives after Bold, Uppercase and Normal Negation Words (Cz, Pz, C3, C4, P3, P4)

Blume Tier

TNN: ... NO flower / animal / newspaper / bicycle.
(Eine Rose ist KEINE Blume.)

TNU: ... a flower / animal / newspaper / bicycle
(Eine Rose ist eine Blume.)

TNU < TNF (c, p)
TNF < TNN (c, p)
Effects of typographic emphasis on meaning integration

General Negation Processing – ERPs after Target Words (II)

Zeitung Fahrrad

CNF: ... A flower / animal / newspaper / bicycle.
(Eine Rose ist EINE Blume.)

CNU: ... a flower / animal / newspaper / bicycle
(Eine Rose ist eine Blume.)

CNN: ... NO flower / animal / newspaper / bicycle.
(Eine Rose ist KEINE Blume.)
1. It remains complicated! 😊
2. Does bold typeface lead to similar effects as uppercase changes?
 - No, uppercase conditions more pronounced effects
2. Does typographic marking lead to processing differences in following words?
 - Dependent on polarity, N1-P2-complex only in affirmative conditions effected (unusual pronunciation?)
3. Is negation processing effected by typographic marking?
 - Not consistently
4. Are there processing differences between different forms of negation (object-category relevance vs. verb-object relation)?
 - Yes, sentences with content verbs generally more negative than subject-object-relations
Conclusion

• Empirical validation of Easy Language rules
• Reformulation + refinement of Easy Language rules
• Methodological proof of concept concerning target groups
• Insight into cognitive processing of linguistic complexity levels
Contact:
https://www.blogs.uni-mainz.de/fb05leichtesprache-eng/
leichtesprache@uni-mainz.de